Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.748.720
Filter
1.
PLoS One ; 19(4): e0300668, 2024.
Article in English | MEDLINE | ID: mdl-38578780

ABSTRACT

Mast cells are effector cells known to contribute to allergic airway disease. When activated, mast cells release a broad spectrum of inflammatory mediators, including the mast cell-specific protease carboxypeptidase A3 (CPA3). The expression of CPA3 in the airway epithelium and lumen of asthma patients has been associated with a Th2-driven airway inflammation. However, the role of CPA3 in asthma is unclear and therefore, the aim of this study was to investigate the impact of CPA3 for the development and severity of allergic airway inflammation using knockout mice with a deletion in the Cpa3 gene. We used the ovalbumin (OVA)- and house-dust mite (HDM) induced murine asthma models, and monitored development of allergic airway inflammation. In the OVA model, mice were sensitized with OVA intraperitoneally at seven time points and challenged intranasally (i.n.) with OVA three times. HDM-treated mice were challenged i.n. twice weekly for three weeks. Both asthma protocols resulted in elevated airway hyperresponsiveness, increased number of eosinophils in bronchoalveolar lavage fluid, increased peribronchial mast cell degranulation, goblet cell hyperplasia, thickening of airway smooth muscle layer, increased expression of IL-33 and increased production of allergen-specific IgE in allergen-exposed mice as compared to mocktreated mice. However, increased number of peribronchial mast cells was only seen in the HDM asthma model. The asthma-like responses in Cpa3-/- mice were similar as in wild type mice, regardless of the asthma protocol used. Our results demonstrated that the absence of a functional Cpa3 gene had no effect on several symptoms of asthma in two different mouse models. This suggest that CPA3 is dispensable for development of allergic airway inflammation in acute models of asthma in mice.


Subject(s)
Asthma , Mast Cells , Animals , Mice , Allergens/metabolism , Bronchoalveolar Lavage Fluid , Carboxypeptidases/metabolism , Disease Models, Animal , Inflammation/genetics , Inflammation/metabolism , Lung/metabolism , Mast Cells/metabolism , Mice, Inbred BALB C , Ovalbumin/metabolism
2.
Life Sci Alliance ; 7(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38580392

ABSTRACT

Antimicrobial peptides (AMPs) are host defense effectors with potent neutralizing and immunomodulatory functions against invasive pathogens. The AMPs α-Defensin 1-3/DEFA1A3 participate in innate immune responses and influence patient outcomes in various diseases. DNA copy-number variations in DEFA1A3 have been associated with severity and outcomes in infectious diseases including urinary tract infections (UTIs). Specifically, children with lower DNA copy numbers were more susceptible to UTIs. The mechanism of action by which α-Defensin 1-3/DEFA1A3 copy-number variations lead to UTI susceptibility remains to be explored. In this study, we use a previously characterized transgenic knock-in of the human DEFA1A3 gene mouse to dissect α-Defensin 1-3 gene dose-dependent antimicrobial and immunomodulatory roles during uropathogenic Escherichia coli (UPEC) UTI. We elucidate the relationship between kidney neutrophil- and collecting duct intercalated cell-derived α-Defensin 1-3/DEFA1A3 expression and UTI. We further describe cooperative effects between α-Defensin 1-3 and other AMPs that potentiate the neutralizing activity against UPEC. Cumulatively, we demonstrate that DEFA1A3 directly protects against UPEC meanwhile impacting pro-inflammatory innate immune responses in a gene dosage-dependent manner.


Subject(s)
Urinary Tract Infections , alpha-Defensins , Animals , Humans , Mice , alpha-Defensins/genetics , DNA , Gene Dosage , Immunity, Innate/genetics , Kidney/metabolism , Peptides, Cyclic/genetics , Urinary Tract Infections/genetics , Urinary Tract Infections/metabolism
3.
Nat Commun ; 15(1): 2939, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580630

ABSTRACT

Endplate sclerosis is a notable aspect of spine degeneration or aging, but the mechanisms remain unclear. Here, we report that senescent macrophages accumulate in the sclerotic endplates of lumbar spine instability (LSI) or aging male mouse model. Specifically, knockout of cdkn2a (p16) in macrophages abrogates LSI or aging-induced angiogenesis and sclerosis in the endplates. Furthermore, both in vivo and in vitro studies indicate that IL-10 is the primary elevated cytokine of senescence-related secretory phenotype (SASP). Mechanistically, IL-10 increases pSTAT3 in endothelial cells, leading to pSTAT3 directly binding to the promoters of Vegfa, Mmp2, and Pdgfb to encourage their production, resulting in angiogenesis. This study provides information on understanding the link between immune senescence and endplate sclerosis, which might be useful for therapeutic approaches.


Subject(s)
Cellular Senescence , Interleukin-10 , Animals , Male , Mice , 60489 , Endothelial Cells , Interleukin-10/genetics , Macrophages , Sclerosis
4.
Sci Rep ; 14(1): 8070, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580672

ABSTRACT

Obesity is associated with increased ovarian inflammation and the establishment of leptin resistance. We presently investigated the role of impaired leptin signalling on transcriptional regulation in granulosa cells (GCs) collected from genetically obese mice. Furthermore, we characterised the association between ovarian leptin signalling, the activation of the NOD-like receptor protein 3 (NLRP3) inflammasome and macrophage infiltration in obese mice. After phenotype characterisation, ovaries were collected from distinct group of animals for protein and mRNA expression analysis: (i) mice subjected to a diet-induced obesity (DIO) protocol, where one group was fed a high-fat diet (HFD) and another a standard chow diet (CD) for durations of 4 or 16 weeks; (ii) mice genetically deficient in the long isoform of the leptin receptor (ObRb; db/db); (iii) mice genetically deficient in leptin (ob/ob); and (iv) mice rendered pharmacologically hyperleptinemic (LEPT). Next, GCs from antral follicles isolated from db/db and ob/ob mice were subjected to transcriptome analysis. Transcriptional analysis revealed opposing profiles in genes associated with steroidogenesis and prostaglandin action between the genetic models, despite the similarities in body weight. Furthermore, we observed no changes in the mRNA and protein levels of NLRP3 inflammasome components in the ovaries of db/db mice or in markers of M1 and M2 macrophage infiltration. This contrasted with the downregulation of NLRP3 inflammasome components and M1 markers in ob/ob and 16-wk HFD-fed mice. We concluded that leptin signalling regulates NLRP3 inflammasome activation and the expression of M1 markers in the ovaries of obese mice in an ObRb-dependent and ObRb-independent manner. Furthermore, we found no changes in the expression of leptin signalling and NLRP3 inflammasome genes in GCs from db/db and ob/ob mice, which was associated with no effects on macrophage infiltration genes, despite the dysregulation of genes associated with steroidogenesis in homozygous obese db/db. Our results suggest that: (i) the crosstalk between leptin signalling, NLRP3 inflammasome and macrophage infiltration takes place in ovarian components other than the GC compartment; and (ii) transcriptional changes in GCs from homozygous obese ob/ob mice suggest structural rearrangement and organisation, whereas in db/db mice the impairment in steroidogenesis and secretory activity.


Subject(s)
Inflammasomes , Leptin , Animals , Female , Mice , Granulosa Cells/metabolism , Inflammasomes/genetics , Leptin/metabolism , Mice, Obese , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Proteins , Obesity/metabolism , Receptors, Leptin/genetics , RNA, Messenger
5.
Sci Rep ; 14(1): 8046, 2024 04 05.
Article in English | MEDLINE | ID: mdl-38580748

ABSTRACT

Osteoarthritis is a common chronic disease and major cause of disability and chronic pain in ageing populations. In this pathology, the entire joint is involved, and the regeneration of articular cartilage still remains one of the main challenges. Here, we investigated the molecular mechanisms underlying cartilage regeneration in young mice using a full-thickness cartilage injury (FTCI) model. FTCI-induced cartilage defects were created in the femoral trochlea of young and adult C57BL/6 mice. To identify key molecules and pathways involved in the early response to cartilage injury, we performed RNA sequencing (RNA-seq) analysis of cartilage RNA at 3 days after injury. Young mice showed superior cartilage regeneration compared to adult mice after cartilage injury. RNA-seq analysis revealed significant upregulation of genes associated with the immune response, particularly in the IFN-γ signaling pathway and qRT-PCR analysis showed macrophage polarization in the early phase of cartilage regeneration (3 days) in young mice after injury, which might promote the removal of damaged or necrotic cells and initiate cartilage regeneration in response to injury. IFN-γR1- and IFN-γ-deficient mice exhibited impaired cartilage regeneration following cartilage injury. DMM-induced and spontaneous OA phenotypes were exacerbated in IFN-γR1-/- mice than in wild-type mice. Our data support the hypothesis that IFN-γ signaling is necessary for cartilage regeneration, as well as for the amelioration of post-traumatic and age-induced OA.


Subject(s)
Cartilage, Articular , Osteoarthritis , Animals , Mice , Cartilage, Articular/pathology , Disease Models, Animal , Interferon-gamma/genetics , Mice, Inbred C57BL , Osteoarthritis/metabolism , Regeneration , Signal Transduction
6.
Nat Commun ; 15(1): 2953, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580662

ABSTRACT

Heart failure with preserved ejection fraction (HFpEF) is associated with endothelial dysfunction. We have previously reported that statins prevent endothelial dysfunction through inhibition of microRNA-133a (miR-133a). This study is to investigate the effects and the underlying mechanisms of statins on HFpEF. Here, we show that statins upregulate the expression of a circular RNA (circRNA-RBCK1) which is co-transcripted with the ring-B-box-coiled-coil protein interacting with protein kinase C-1 (RBCK1) gene. Simultaneously, statins increase activator protein 2 alpha (AP-2α) transcriptional activity and the interaction between circRNA-RBCK1 and miR-133a. Furthermore, AP-2α directly interacts with RBCK1 gene promoter in endothelial cells. In vivo, lovastatin improves diastolic function in male mice under HFpEF, which is abolished by loss function of endothelial AP-2α or circRNA-RBCK1. This study suggests that statins upregulate the AP-2α/circRNA-RBCK1 signaling to suppress miR-133a in cardiac endothelial cells and prevent diastolic dysfunction in HFpEF.


Subject(s)
Heart Failure , Hydroxymethylglutaryl-CoA Reductase Inhibitors , MicroRNAs , Animals , Male , Mice , Endothelial Cells/metabolism , Heart Failure/drug therapy , Heart Failure/genetics , Heart Failure/metabolism , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , MicroRNAs/metabolism , RNA, Circular/genetics , Stroke Volume/physiology
7.
Stem Cell Res Ther ; 15(1): 98, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581019

ABSTRACT

BACKGROUND: In vitro chondrogenesis of mesenchymal stromal cells (MSCs) driven by the essential chondro-inducer transforming growth factor (TGF)-ß is instable and yields undesired hypertrophic cartilage predisposed to bone formation in vivo. TGF-ß can non-canonically activate bone morphogenetic protein-associated ALK1/2/3 receptors. These have been accused of driving hypertrophic MSC misdifferentiation, but data remained conflicting. We here tested the antihypertrophic capacity of two highly specific ALK1/2/3 inhibitors - compound A (CompA) and LDN-212854 (LDN21) - in order to reveal potential prohypertrophic contributions of these BMP/non-canonical TGF-ß receptors during MSC in vitro chondrogenesis. METHODS: Standard chondrogenic pellet cultures of human bone marrow-derived MSCs were treated with TGF-ß and CompA (500 nM) or LDN21 (500 nM). Daily 6-hour pulses of parathyroid hormone-related peptide (PTHrP[1-34], 2.5 nM, from day 7) served as potent antihypertrophic control treatment. Day 28 samples were subcutaneously implanted into immunodeficient mice. RESULTS: All groups underwent strong chondrogenesis, but GAG/DNA deposition and ACAN expression were slightly but significantly reduced by ALK inhibition compared to solvent controls along with a mild decrease of the hypertrophy markers IHH-, SPP1-mRNA, and Alkaline phosphatase (ALP) activity. When corrected for the degree of chondrogenesis (COL2A1 expression), only pulsed PTHrP but not ALK1/2/3 inhibition qualified as antihypertrophic treatment. In vivo, all subcutaneous cartilaginous implants mineralized within 8 weeks, but PTHrP pretreated samples formed less bone and attracted significantly less haematopoietic marrow than ALK1/2/3 inhibitor groups. CONCLUSIONS: Overall, our data show that BMP-ALK1/2/3 inhibition cannot program mesenchymal stromal cells toward stable chondrogenesis. BMP-ALK1/2/3 signalling is no driver of hypertrophic MSC misdifferentiation and BMP receptor induction is not an adverse prohypertrophic side effect of TGF-ß that leads to endochondral MSC misdifferentiation. Instead, the prohypertrophic network comprises misregulated PTHrP/hedgehog signalling and WNT activity, and a potential contribution of TGF-ß-ALK4/5-mediated SMAD1/5/9 signalling should be further investigated to decide about its postulated prohypertrophic activity. This will help to successfully engineer cartilage replacement tissues from MSCs in vitro and translate these into clinical cartilage regenerative therapies.


Subject(s)
Mesenchymal Stem Cells , Parathyroid Hormone-Related Protein , Animals , Humans , Mice , Cells, Cultured , Chondrocytes/metabolism , Chondrogenesis , Hedgehog Proteins/genetics , Hypertrophy/metabolism , Mesenchymal Stem Cells/metabolism , Parathyroid Hormone-Related Protein/pharmacology , Transforming Growth Factor beta/metabolism
8.
Commun Biol ; 7(1): 415, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38580843

ABSTRACT

The ten-eleven-translocation family of proteins (TET1/2/3) are epigenetic regulators of gene expression. They regulate genes by promoting DNA demethylation (i.e., catalytic activity) and by partnering with regulatory proteins (i.e., non-catalytic functions). Unlike Tet1 and Tet2, Tet3 is not expressed in mouse embryonic stem cells (ESCs) but is induced upon ESC differentiation. However, the significance of its dual roles in lineage specification is less defined. By generating TET3 catalytic-mutant (Tet3m/m) and knockout (Tet3-/-) mouse ESCs and differentiating them to neuroectoderm (NE), we identify distinct catalytic-dependent and independent roles of TET3 in NE specification. We find that the catalytic activity of TET3 is important for activation of neural genes while its non-catalytic functions are involved in suppressing mesodermal programs. Interestingly, the vast majority of differentially methylated regions (DMRs) in Tet3m/m and Tet3-/- NE cells are hypomethylated. The hypo-DMRs are associated to aberrantly upregulated genes while the hyper-DMRs are linked to downregulated neural genes. We find the maintenance methyltransferase Dnmt1 as a direct target of TET3, which is downregulated in TET3-deficient NE cells and may contribute to the increased DNA hypomethylation. Our findings establish that the catalytic-dependent and -independent roles of TET3 have distinct contributions to NE specification with potential implications in development.


Subject(s)
Dioxygenases , Animals , Mice , Cell Differentiation/genetics , Dioxygenases/genetics , Dioxygenases/metabolism , DNA Methylation , DNA-Binding Proteins/metabolism , Neural Plate/metabolism
9.
Stem Cell Res Ther ; 15(1): 97, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38581065

ABSTRACT

BACKGROUND: DNA damage and oxidative stress induced by chemotherapy are important factors in the onset of premature ovarian insufficiency (POI). Studies have shown that mitochondria derived from mesenchymal stem cells (MSC-Mito) are beneficial for age-related diseases, but their efficacy alone is limited. Pyrroloquinoline quinone (PQQ) is a potent antioxidant with significant antiaging and fertility enhancement effects. This study aimed to investigate the therapeutic effect of MSC-Mito in combination with PQQ on POI and the underlying mechanisms involved. METHODS: A POI animal model was established in C57BL/6J mice by cyclophosphamide and busulfan. The effects of MSC-Mito and PQQ administration on the estrous cycle, ovarian pathological damage, sex hormone secretion, and oxidative stress in mice were evaluated using methods such as vaginal smears and ELISAs. Western blotting and immunohistochemistry were used to assess the expression of SIRT1, PGC-1α, and ATM/p53 pathway proteins in ovarian tissues. A cell model was constructed using KGN cells treated with phosphoramide mustard to investigate DNA damage and apoptosis through comet assays and flow cytometry. SIRT1 siRNA was transfected into KGN cells to further explore the role of the SIRT1/ATM/p53 pathway in combination therapy with MSC-Mito and PQQ for POI. RESULTS: The combined treatment of MSC-Mito and PQQ significantly restored ovarian function and antioxidant capacity in mice with POI. This treatment also reduced the loss of follicles at various stages, improving the disrupted estrous cycle. In vitro experiments demonstrated that PQQ facilitated the proliferation of MitoTracker-labelled MSC-Mito, synergistically restoring mitochondrial function and inhibiting oxidative stress in combination with MSC-Mito. Both in vivo and in vitro, the combination of MSC-Mito and PQQ increased mitochondrial biogenesis mediated by SIRT1 and PGC-1α while inhibiting the activation of ATM and p53, consequently reducing DNA damage-mediated cell apoptosis. Furthermore, pretreatment of KGN cells with SIRT1 siRNA reversed nearly all the aforementioned changes induced by the combined treatment. CONCLUSIONS: Our research findings indicate that PQQ facilitates MSC-Mito proliferation and, in combination with MSC-Mito, ameliorates chemotherapy-induced POI through the SIRT1/ATM/p53 signaling pathway.


Subject(s)
Mesenchymal Stem Cells , Primary Ovarian Insufficiency , Animals , Female , Humans , Mice , Antioxidants/metabolism , Ataxia Telangiectasia Mutated Proteins/metabolism , Mesenchymal Stem Cells/metabolism , Mice, Inbred C57BL , Mitochondria/metabolism , PQQ Cofactor/pharmacology , Primary Ovarian Insufficiency/pathology , RNA, Small Interfering/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Tumor Suppressor Protein p53/genetics , Tumor Suppressor Protein p53/metabolism
10.
Front Immunol ; 15: 1367048, 2024.
Article in English | MEDLINE | ID: mdl-38585259

ABSTRACT

Objective: In the defense against microorganisms like Candida albicans, macrophages recruit LC3(Microtubule-associated protein 1A/1B-light chain 3) to the periplasm, engaging in the elimination process through the formation of a single-membrane phagosome known as LC3-associated phagocytosis (LAP). Building on this, we propose the hypothesis that glucocorticoids may hinder macrophage phagocytosis of Candida glabrata by suppressing LAP, and rapamycin could potentially reverse this inhibitory effect. Methods: RAW264.7 cells were employed for investigating the immune response to Candida glabrata infection. Various reagents, including dexamethasone, rapamycin, and specific antibodies, were utilized in experimental setups. Assays, such as fluorescence microscopy, flow cytometry, ELISA (Enzyme-Linked Immunosorbent Assay), Western blot, and confocal microscopy, were conducted to assess phagocytosis, cytokine levels, protein expression, viability, and autophagy dynamics. Results: Glucocorticoids significantly inhibited macrophage autophagy, impairing the cells' ability to combat Candida glabrata. Conversely, rapamycin exhibited a dual role, initially inhibiting and subsequently promoting phagocytosis of Candida glabrata by macrophages. Glucocorticoids hinder macrophage autophagy in Candida glabrata infection by suppressing the MTOR pathway(mammalian target of rapamycin pathway), while the activation of MTOR pathway by Candida glabrata diminishes over time. Conclusion: Our study elucidates the intricate interplay between glucocorticoids, rapamycin, and macrophage autophagy during Candida glabrata infection. Understanding the implications of these interactions not only sheds light on the host immune response dynamics but also unveils potential therapeutic avenues for managing fungal infections.


Subject(s)
Candida glabrata , Candidiasis , Animals , Mice , Candida glabrata/physiology , Glucocorticoids/pharmacology , Glucocorticoids/metabolism , Sirolimus/pharmacology , Mice, Inbred BALB C , Autophagy , Macrophages , TOR Serine-Threonine Kinases/metabolism , Mammals
11.
Genesis ; 62(2): e23597, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38590121

ABSTRACT

Sensory signals detected by olfactory sensory organs are critical regulators of animal behavior. An accessory olfactory organ, the vomeronasal organ, detects cues from other animals and plays a pivotal role in intra- and inter-species interactions in mice. However, how ethologically relevant cues control mouse behavior through approximately 350 vomeronasal sensory receptor proteins largely remains elusive. The type 2 vomeronasal receptor-A4 (V2R-A4) subfamily members have been repeatedly detected from vomeronasal sensory neurons responsive to predator cues, suggesting a potential role of this receptor subfamily as a sensor for predators. This review focuses on this intriguing subfamily, delving into its receptor functions and genetic characteristics.


Subject(s)
Olfactory Bulb , Vomeronasal Organ , Mice , Animals , Olfactory Bulb/physiology , Sensory Receptor Cells/metabolism , Vomeronasal Organ/metabolism
12.
Clin Cancer Res ; 30(8): 1478-1487, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38593249

ABSTRACT

PURPOSE: RUNX3 is a tumor suppressor gene, which is inactivated in approximately 70% of lung adenocarcinomas. Nicotinamide, a sirtuin inhibitor, has demonstrated potential in re-activating epigenetically silenced RUNX3 in cancer cells. This study assessed the therapeutic benefits of combining nicotinamide with first-generation EGFR-tyrosine kinase inhibitors (TKI) for patients with stage IV lung cancer carrying EGFR mutations. PATIENTS AND METHODS: We assessed the impact of nicotinamide on carcinogen-induced lung adenocarcinomas in mice and observed that nicotinamide increased RUNX3 levels and inhibited lung cancer growth. Subsequently, 110 consecutive patients with stage IV lung cancer who had EGFR mutations were recruited: 70 females (63.6%) and 84 never-smokers (76.4%). The patients were randomly assigned to receive either nicotinamide (1 g/day, n = 55) or placebo (n = 55). The primary and secondary endpoints were progression-free survival (PFS) and overall survival (OS), respectively. RESULTS: After a median follow-up of 54.3 months, the nicotinamide group exhibited a median PFS of 12.7 months [95% confidence interval (CI), 10.4-18.3], while the placebo group had a PFS of 10.9 months (9.0-13.2; P = 0.2). The median OS was similar in the two groups (31.0 months with nicotinamide vs. 29.4 months with placebo; P = 0.2). Notably, subgroup analyses revealed a significant reduction in mortality risk for females (P = 0.01) and never-smokers (P = 0.03) treated with nicotinamide. CONCLUSIONS: The addition of nicotinamide with EGFR-TKIs demonstrated potential improvements in PFS and OS, with notable survival benefits for female patients and those who had never smoked (ClinicalTrials.gov Identifier: NCT02416739).


Subject(s)
Adenocarcinoma of Lung , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Female , Animals , Mice , Carcinoma, Non-Small-Cell Lung/drug therapy , Niacinamide/therapeutic use , Prognosis , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/therapeutic use , Adenocarcinoma of Lung/drug therapy , Adenocarcinoma of Lung/genetics , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Mutation , ErbB Receptors/genetics
13.
Commun Biol ; 7(1): 428, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38594590

ABSTRACT

NADH autofluorescence imaging is a promising approach for visualizing energy metabolism at the single-cell level. However, it is sensitive to the redox ratio and the total NAD(H) amount, which can change independently from each other, for example with aging. Here, we evaluate the potential of fluorescence lifetime imaging microscopy (FLIM) of NADH to differentiate between these modalities.We perform targeted modifications of the NAD(H) pool size and ratio in cells and mice and assess the impact on NADH FLIM. We show that NADH FLIM is sensitive to NAD(H) pool size, mimicking the effect of redox alterations. However, individual components of the fluorescence lifetime are differently impacted by redox versus pool size changes, allowing us to distinguish both modalities using only FLIM. Our results emphasize NADH FLIM's potential for evaluating cellular metabolism and relative NAD(H) levels with high spatial resolution, providing a crucial tool for our understanding of aging and metabolism.


Subject(s)
Energy Metabolism , NAD , Mice , Animals , NAD/metabolism , Microscopy, Fluorescence , Oxidation-Reduction , Aging
14.
Front Immunol ; 15: 1373321, 2024.
Article in English | MEDLINE | ID: mdl-38596684

ABSTRACT

Introduction: Sorafenib is currently the first-line treatment for patients with advanced hepatocellular carcinoma (HCC). Nevertheless, sorafenib resistance remains a huge challenge in the clinic. Therefore, it is urgent to elucidate the mechanisms underlying sorafenib resistance for developing novel treatment strategies for advanced HCC. In this study, we aimed to investigate the role and mechanisms of interleukin-22 (IL-22) in sorafenib resistance in HCC. Methods: The in vitro experiments using HCC cell lines and in vivo studies with a nude mouse model were used. Calcium staining, chromatin immunoprecipitation, lactate dehydrogenase release and luciferase reporter assays were employed to explore the expression and roles of IL-22, STAT3 and CD155 in sorafenib resistance. Results: Our clinical results demonstrated a significant correlation between elevated IL-22 expression and poor prognosis in HCC. Analysis of transcriptomic data from the phase-3 STORM-trial (BIOSTORM) suggested that STAT3 signaling activation and natural killer (NK) cell infiltration may associate sorafenib responses. STAT3 signaling could be activated by IL-22 administration in HCC cells, and then enhanced sorafenib resistance in HCC cells by promoting cell proliferation and reducing apoptosis in vitro and in vivo. Further, we found IL-22/STAT3 axis can transcriptionally upregulate CD155 expression in HCC cells, which could significantly reduce NK cell-mediated HCC cell lysis in a co-culture system. Conclusions: Collectively, IL-22 could contribute to sorafenib resistance in HCC by activating STAT3/CD155 signaling axis to decrease the sensitivities of tumor cells to sorafenib-mediated direct cytotoxicity and NK cell-mediated lysis. These findings deepen the understanding of how sorafenib resistance develops in HCC in terms of IL-22/STAT3 signaling pathway, and provide potential targets to overcome sorafenib resistance in patients with advanced HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Mice , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Sorafenib/pharmacology , Sorafenib/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , 60552 , Drug Resistance, Neoplasm , Cell Line, Tumor , Signal Transduction , STAT3 Transcription Factor/metabolism
15.
Front Immunol ; 15: 1368516, 2024.
Article in English | MEDLINE | ID: mdl-38601146

ABSTRACT

Background: Differences in border zone contribute to different outcomes post-infarction, such as left ventricular aneurysm (LVA) and myocardial infarction (MI). LVA usually forms within 24 h of the onset of MI and may cause heart rupture; however, LVA surgery is best performed 3 months after MI. Few studies have investigated the LVA model, the differences in border zones between LVA and MI, and the mechanism in the border zone. Methods: The LVA, MI, and SHAM mouse models were used. Echocardiography, Masson's trichrome staining, and immunofluorescence staining were performed, and RNA sequencing of the border zone was conducted. The adipocyte-conditioned medium-treated hypoxic macrophage cell line and LVA and MI mouse models were employed to determine the effects of the hub gene, adiponectin (ADPN), on macrophages. Quantitative polymerase chain reaction (qPCR), Western blot analysis, transmission electron microscopy, and chromatin immunoprecipitation (ChIP) assays were conducted to elucidate the mechanism in the border zone. Human subepicardial adipose tissue and blood samples were collected to validate the effects of ADPN. Results: A novel, simple, consistent, and low-cost LVA mouse model was constructed. LVA caused a greater reduction in contractile functions than MI owing to reduced wall thickness and edema in the border zone. ADPN impeded cardiac edema and promoted lymphangiogenesis by increasing macrophage infiltration post-infarction. Adipocyte-derived ADPN promoted M2 polarization and sustained mitochondrial quality via the ADPN/AdipoR2/HMGB1 axis. Mechanistically, ADPN impeded macrophage HMGB1 inflammation and decreased interleukin-6 (IL6) and HMGB1 secretion. The secretion of IL6 and HMGB1 increased ADPN expression via STAT3 and the co-transcription factor, YAP, in adipocytes. Based on ChIP and Dual-Glo luciferase experiments, STAT3 promoted ADPN transcription by binding to its promoter in adipocytes. In vivo, ADPN promoted lymphangiogenesis and decreased myocardial injury after MI. These phenotypes were rescued by macrophage depletion or HMGB1 knockdown in macrophages. Supplying adipocytes overexpressing STAT3 decreased collagen disposition, increased lymphangiogenesis, and impaired myocardial injury. However, these effects were rescued after HMGB1 knockdown in macrophages. Overall, the IL6/ADPN/HMGB1 axis was validated using human subepicardial tissue and blood samples. This axis could serve as an independent factor in overweight MI patients who need coronary artery bypass grafting (CABG) treatment. Conclusion: The IL6/ADPN/HMGB1 loop between adipocytes and macrophages in the border zone contributes to different clinical outcomes post-infarction. Thus, targeting the IL6/ADPN/HMGB1 loop may be a novel therapeutic approach for cardiac lymphatic regulation and reduction of cell senescence post-infarction.


Subject(s)
HMGB1 Protein , Myocardial Infarction , Mice , Animals , Humans , Interleukin-6/metabolism , Adiponectin/genetics , Adiponectin/metabolism , HMGB1 Protein/genetics , HMGB1 Protein/metabolism , Feedback , Myocardial Infarction/metabolism , Macrophages/metabolism , Adipocytes/metabolism
16.
Front Immunol ; 15: 1360527, 2024.
Article in English | MEDLINE | ID: mdl-38601155

ABSTRACT

Background: Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease, which leads to muscle weakness and eventual paralysis. Numerous studies have indicated that mitophagy and immune inflammation have a significant impact on the onset and advancement of ALS. Nevertheless, the possible diagnostic and prognostic significance of mitophagy-related genes associated with immune infiltration in ALS is uncertain. The purpose of this study is to create a predictive model for ALS using genes linked with mitophagy-associated immune infiltration. Methods: ALS gene expression profiles were downloaded from the Gene Expression Omnibus (GEO) database. Univariate Cox analysis and machine learning methods were applied to analyze mitophagy-associated genes and develop a prognostic risk score model. Subsequently, functional and immune infiltration analyses were conducted to study the biological attributes and immune cell enrichment in individuals with ALS. Additionally, validation of identified feature genes in the prediction model was performed using ALS mouse models and ALS patients. Results: In this study, a comprehensive analysis revealed the identification of 22 mitophagy-related differential expression genes and 40 prognostic genes. Additionally, an 18-gene prognostic signature was identified with machine learning, which was utilized to construct a prognostic risk score model. Functional enrichment analysis demonstrated the enrichment of various pathways, including oxidative phosphorylation, unfolded proteins, KRAS, and mTOR signaling pathways, as well as other immune-related pathways. The analysis of immune infiltration revealed notable distinctions in certain congenital immune cells and adaptive immune cells between the low-risk and high-risk groups, particularly concerning the T lymphocyte subgroup. ALS mouse models and ALS clinical samples demonstrated consistent expression levels of four mitophagy-related immune infiltration genes (BCKDHA, JTB, KYNU, and GTF2H5) with the results of bioinformatics analysis. Conclusion: This study has successfully devised and verified a pioneering prognostic predictive risk score for ALS, utilizing eighteen mitophagy-related genes. Furthermore, the findings indicate that four of these genes exhibit promising roles in the context of ALS prognostic.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Animals , Mice , Humans , Amyotrophic Lateral Sclerosis/genetics , Mitophagy/genetics , Computational Biology , Databases, Factual , Disease Models, Animal
17.
Front Immunol ; 15: 1363278, 2024.
Article in English | MEDLINE | ID: mdl-38601160

ABSTRACT

Purpose: A mouse model of irradiation (IR)-induced heart injury was established to investigate the early changes in cardiac function after radiation and the role of cardiac macrophages in this process. Methods: Cardiac function was evaluated by heart-to-tibia ratio, lung-to-heart ratio and echocardiography. Immunofluorescence staining and flow cytometry analysis were used to evaluate the changes of macrophages in the heart. Immune cells from heart tissues were sorted by magnetic beads for single-cell RNA sequencing, and the subsets of macrophages were identified and analyzed. Trajectory analysis was used to explore the differentiation relationship of each macrophage subset. The differentially expressed genes (DEGs) were compared, and the related enriched pathways were identified. Single-cell regulatory network inference and clustering (SCENIC) analysis was performed to identify the potential transcription factors (TFs) which participated in this process. Results: Cardiac function temporarily decreased on Day 7 and returned to normal level on Day 35, accompanied by macrophages decreased and increased respectively. Then, we identified 7 clusters of macrophages by single-cell RNA sequencing and found two kinds of stage specific macrophages: senescence-associated macrophage (Cdkn1ahighC5ar1high) on Day 7 and interferon-associated macrophage (Ccr2highIsg15high) on Day 35. Moreover, we observed cardiac macrophages polarized over these two-time points based on M1/M2 and CCR2/major histocompatibility complex II (MHCII) expression. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analyses suggested that macrophages on Day 7 were characterized by an inflammatory senescent phenotype with enhanced chemotaxis and inflammatory factors, while macrophages on Day 35 showed enhanced phagocytosis with reduced inflammation, which was associated with interferon-related pathways. SCENIC analysis showed AP-1 family members were associated with IR-induced macrophages changes. Conclusion: We are the first study to characterize the diversity, features, and evolution of macrophages during the early stages in an IR-induced cardiac injury animal model.


Subject(s)
Macrophages , Phagocytosis , Mice , Animals , Inflammation/metabolism , Interferons/metabolism , Sequence Analysis, RNA
18.
BMC Complement Med Ther ; 24(1): 158, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38610025

ABSTRACT

BACKGROUND: A triplet chemotherapy regimen of docetaxel, cisplatin, and 5-fluorouracil (TPF) is used to treat head and neck squamous cell carcinoma; however, it is toxic to bone marrow mesenchymal stem cells (BMSCs). We previously demonstrated that Ganoderma spore lipid (GSL) protect BMSCs against cyclophosphamide toxicity. In this study, we investigated the protective effects of GSL against TPF-induced BMSCs and hematopoietic damage. METHODS: BMSCs and C57BL/6 mice were divided into control, TPF, co-treatment (simultaneously treated with GSL and TPF for 2 days), and pre-treatment (treated with GSL for 7 days before 2 days of TPF treatment) groups. In vitro, morphology, phenotype, proliferation, senescence, apoptosis, reactive oxygen species (ROS), and differentiation of BMSCs were evaluated. In vivo, peripheral platelets (PLTs) and white blood cells (WBCs) from mouse venous blood were quantified. Bone marrow cells were isolated for hematopoietic colony-forming examination. RESULTS: In vitro, GSL significantly alleviated TPF-induced damage to BMSCs compared with the TPF group, recovering their morphology, phenotype, proliferation, and differentiation capacity (p < 0.05). Annexin V/PI and senescence-associated ß-galactosidase staining showed that GSL inhibited apoptosis and delayed senescence in TPF-treated BMSCs (p < 0.05). GSL downregulated the expression of caspase-3 and reduced ROS formation (p < 0.05). In vivo, GSL restored the number of peripheral PLTs and WBCs and protected the colony-forming capacity of bone marrow cells (p < 0.05). CONCLUSIONS: GSL efficiently protected BMSCs from damage caused by TPF and recovered hematopoiesis.


Subject(s)
Antineoplastic Agents , Ganoderma , Mesenchymal Stem Cells , Animals , Mice , Mice, Inbred C57BL , Docetaxel , Cisplatin , Reactive Oxygen Species , Spores, Fungal , Hematopoiesis , Fluorouracil , Lipids
19.
Sci Prog ; 107(2): 368504241239444, 2024.
Article in English | MEDLINE | ID: mdl-38614462

ABSTRACT

BACKGROUND: Ischemia-reperfusion injury (IRI) poses a significant challenge for physicians, necessitating the management of cell damage and the preservation of organ functions. Various surgical procedures, such as vascular surgery on extremities, temporary cross-clamping of the abdominal aorta in aortic surgery, and the use of a tourniquet in extremity surgeries, may induce lower limb IRI. The susceptibility to IRI is heightened in individuals with diabetes. This study aimed to investigate the effects of fullerenol C60 and sevoflurane on mouse muscle tissue in a lower limb IRI model and to assess their potential in preventing complications arising from ischemia-reperfusion in mice with streptozocin-induced diabetes. METHODS: A total of 36 adult Swiss albino mice were randomly divided into six groups, each consisting of six mice: control group (group C), diabetes group (group D), diabetes-ischemia/reperfusion group (group DIR), diabetes-ischemia/reperfusion-fullerenol C60 group (group DIR-FC60), diabetes-ischemia/reperfusion-sevoflurane group (group DIR-S), and diabetes-ischemia/reperfusion-sevoflurane-fullerenol C60 group (DIR-S-FC60). Streptozocin (55 mg/kg) was intraperitoneally administered to induce diabetes in the relevant groups, with mice displaying blood glucose levels of 250 mg/dL or higher at 72 h were considered diabetic. After 4 weeks, all groups underwent laparotomy under anesthesia. In DIR-FC60 and DIR-S-FC60 groups, fullerenol C60 (100 mg/kg) was intraperitoneally administrated 30 min before the ischemia period. Sevoflurane, delivered in 100% oxygen at a rate of 2.3% and 4 L/min, was administered during the ischemia period in DIR-S and DIR-S-FC60 groups. In the IR groups, a microvascular clamp was placed on the infrarenal abdominal aorta for 120 min during the ischemia period, followed by the removal of the clamp and a 120-min reperfusion period. At the end of the reperfusion, gastrocnemius muscle tissues were removed for histopathological and biochemical parameter examinations. RESULTS: Histopathological examination revealed a significant reduction in the disorganization and degeneration of muscle cells in the DIR-S-FC60 group compared to the DIR group (p = 0.041). Inflammatory cell infiltration was notably lower in the DIR-S, DIR-FC60, and DIR-S-FC60 groups than in the DIR group (p = 0.031, p = 0.011, and p = 0.013, respectively). The total damage scores in the DIR-FC60 and DIR-S-FC60 groups were significantly lower than in the DIR group (p = 0.018 and p = 0.008, respectively). Furthermore, the levels of malondialdehyde (MDA) in the DIR-S, DIR-FC60, and DIR-S-FC60 groups were significantly lower than in the DIR group (p < 0.001, p < 0.001, and p < 0.001, respectively). Catalase (CAT) enzyme activity in the DIR-S, DIR-FC60, and DIR-S-FC60 groups was higher than in the DIR group (p = 0.001, p = 0.014, and p < 0.001, respectively). Superoxide dismutase (SOD) enzyme activity in the DIR-FC60 and DIR-S-FC60 groups was also higher than in the DIR group (p < 0.001 and p = 0.001, respectively). CONCLUSION: Our findings indicate that administering fullerenol C60 30 min prior to ischemia in diabetic mice, in combination with sevoflurane, led to a reduction in oxidative stress and the correction of IR-related damage in muscle tissue histopathology. We believe that the administration of fullerenol C60 before IR, coupled with sevoflurane administration during IR, exerts a protective effect in mice.


Subject(s)
Diabetes Mellitus, Experimental , Fullerenes , Reperfusion Injury , Animals , Mice , Sevoflurane , Streptozocin , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Ischemia , Reperfusion Injury/drug therapy , Lower Extremity
20.
J Nanobiotechnology ; 22(1): 178, 2024 Apr 13.
Article in English | MEDLINE | ID: mdl-38614985

ABSTRACT

BACKGROUND: Clearance of apoptotic cells by efferocytosis is crucial for prevention of atherosclerosis progress, and impaired efferocytosis contributes to the aggravated atherosclerosis. RESULTS: In this study, we found that diabetic ApoE-/- mice showed aggravated atherosclerosis as hyperglycemia damaged the efferocytosis capacity at least partially due to decreased expression of Mer tyrosine kinase (MerTK) on macrophages. To locally restore MerTK in the macrophages in the plaque, hybrid membrane nanovesicles (HMNVs) were thus developed. Briefly, cell membrane from MerTK overexpressing RAW264.7 cell and transferrin receptor (TfR) overexpressing HEK293T cell were mixed with DOPE polymers to produce nanovesicles designated as HMNVs. HMNVs could fuse with the recipient cell membrane and thus increased MerTK in diabetic macrophages, which in turn restored the efferocytosis capacity. Upon intravenous administration into diabetic ApoE-/- mice, superparamagnetic iron oxide nanoparticles (SMN) decorated HMNVs accumulated at the aorta site significantly under magnetic navigation, where the recipient macrophages cleared the apoptotic cells efficiently and thus decreased the inflammation. CONCLUSIONS:  Our study indicates that MerTK decrease in macrophages contributes to the aggravated atherosclerosis in diabetic ApoE-/- mice and regional restoration of MerTK in macrophages of the plaque via HMNVs could be a promising therapeutic approach.


Subject(s)
Atherosclerosis , Diabetes Mellitus , Humans , Animals , Mice , 60574 , HEK293 Cells , Cell Membrane , Protein-Tyrosine Kinases , Apolipoproteins E/genetics , Magnetic Iron Oxide Nanoparticles
SELECTION OF CITATIONS
SEARCH DETAIL
...